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Abstract – This paper advances research in practical 

distributed data fusion with an emphasis on the generalized 

fusion of probability density functions in the presence of 

unknown correlations. Specifically, the proposed algorithm 

addresses fusion of any finite number of probability density 

functions in a distributed tracking environment where 

“rumor propagation” and statistical correlations may be 

present. This “rumor propagation” arises in real-world 

tactical military applications where distributed fusion 

nodes have dynamic and multi-cyclic data flows. In 

addition, interoperability requirements with legacy systems 

preclude control over pre-processing of data fusion inputs 

to ensure statistical independence or modify legacy systems 

with pedigree tagging techniques. Leveraging the well-

known Covariance Intersection algorithm, its 

generalization, and previously developed approximations 

to Covariance Intersection, a computationally simple 

approximation for the generalized fusion of any number of 

probability density functions is presented as the novel 

result of this paper. The derivation of this algorithm and 

numerical examples illustrate that the proposed approach 

enables practical fusion of generalized (non-Gaussian) 

observations in an ad-hoc distributed fusion network 

without the need for pedigree tagging. 

Keywords: Distributed Data Fusion, Tracking, Covariance 

Intersection, Information Theory, Chernoff Fusion. 

1 Introduction 

When designing real-world distributed tracking systems for 

tactical military applications, several practical 

considerations arise that preclude the use of classical 

tracking algorithms which assume statistical independence 

of data inputs. First, tactical environments often consist of 

sensor and data processing nodes that are connected through 

mobile ad-hoc networks which are dynamic and 

unpredictable. Since many of these processing nodes 

produce fused solutions instead of sensor-level 

measurements, it is virtually impossible to eliminate 

redundant data flows between nodes in real-time. Second, 

many legacy systems that provide tracking data cannot be 

modified to produce statistically independent updates or 

provide pedigree information that may assist in identifying 

redundant data flows. Finally, tracking data with a variety of 

statistics such as active, passive, Gaussian, and non-

Gaussian are shared between these processing nodes. These 

factors necessitate generalized algorithms for fusing 

multiple tracking data inputs of various types in the 

presence of “rumor propagation”. Without such algorithms, 

scalable distributed fusion is not possible in tactical military 

applications. 

One approach to handling rumor propagation is called 

pedigree tagging [1]. This approach involves the exchange 

of metadata (pedigree) that represents the processing history 

and source information of a particular piece of tracking 

data. For example, a track may contain pedigree information 

that indicates all the sensor sources that contributed to the 

track as well as the nodes that processed the track. 

Theoretically, using this approach, algorithms can be 

developed to identify redundant data at runtime and apply 

alternative processing to accommodate this redundancy. 

There are several problems with this approach in practice. 

First, implementation of a pedigree tagging scheme would 

require modification of sensor processing systems that 

produce tracking data. Second, even if redundant data is 

identified, the pedigree metadata is insufficient to accurately 

remove redundancies from the track state estimate. Finally, 

pedigree tagging does not scale with respect to 

communications bandwidth [2]. 

An alternative approach to pedigree tagging is Covariance 

Intersection [3,4,5,6], which was initially developed in the 

late 1990’s. Covariance Intersection was developed to fuse 

Gaussian state estimates that may contain redundant 

(statistically correlated) data. In addition, Covariance 

Intersection does not require specific knowledge of the 

statistical correlation between inputs. A generalization of 

the Covariance Intersection algorithm (Generalized 

Chernoff Fusion) was later developed for fusion of two 

arbitrary probability density functions, thus lifting the 

Gaussian restriction [7]. These ground-breaking 

developments have enabled scalable distributed data fusion 

for several important special cases. While additional work 

has addressed fusion of any number of Gaussian inputs [8], 

the more generalized case of fusing any number of 
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probability density functions has not been previously 

addressed. This is the emphasis of the current paper. 

This paper is organized as follows. Section 2 provides an 

overview of Covariance Intersection for the Gaussian 

special case. Section 3 summarizes previous work to extend 

Covariance Intersection for the fusion of any number of 

Gaussian inputs. Section 4 provides an overview of 

Generalized Chernoff Fusion, which has been applied to the 

case of fusing two probability density functions. Section 5 

develops the proposed algorithm that extends previous work 

to the fusion of any number of probability density functions 

and provides several approximation techniques for practical 

implementation. Section 6 summarizes the results and 

discusses plans for future work. 

2 Review of Covariance Intersection 

Consider the special case of fusing two statistically 

independent state estimates whose probability distributions 

are Gaussian and represented by a first and second order 

moment (mean and covariance matrix). In this case, the 

fusion equations are given by the information form of the 

Kalman filter [9,10]. Specifically, the fusion of two 

statistically independent state estimates with means a and 

b and covariance matrices A and B  results in the fused 

mean IFc and covariance IFC as follows: 
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Equation (1) is easy to implement and has been used in real-

time tracking systems for several decades. Because of its 

simplicity, it is often used incorrectly in cases where the 

inputs are not necessarily statistically independent. This 

incorrect application of Equation (1) leads to fusion results 

whose covariance is “over optimistic”, which is the most 

troublesome (yet typical) side effect of rumor propagation 

in any distributed data fusion architecture. 

Historically, the ill effects of rumor propagation have been 

mitigated by attempting to specify static data flows within 

the fusion architecture that ensures no rumor propagation. 

This approach is tenable when dealing with fusion 

applications where the sensors and processing nodes are 

under the control of the design agent, such is generally the 

case for fusion on a single platform. This approach is very 

difficult to implement as multiple platforms and external 

tracking systems are integrated into the fusion architecture, 

primarily because these “external” systems are outside the 

control of any one design agent. Ironically, as the need and 

desire for integrating more external systems increases, the 

problem of rumor propagation becomes unmanageable. 

To address this growing problem and enable scalable 

distributed data fusion, the Covariance Intersection 

algorithm was developed in the late 1990’s [3,4,5,6]. This 

algorithm extends the special case of Gaussian fusion to 

inputs that have unknown statistical correlation, as is the 

case with rumor propagation. The Covariance Intersection 

equations are a surprisingly simple variant of the classical 

information filter: 
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Equation (2) provides a set of solutions, which are a 

function of the optimization parameterω on the interval [0, 

1]. Typically, the solution to Equation (2) is determined by 

selecting the value of ω  that minimizes the determinant of 

the fused covariance CIC , which has an Information 

Theoretic justification [7]. An important property of 

Covariance Intersection is that the fused solution 

},{ CICI Cc  is guaranteed to be consistent for any value 

ofω , assuming that the inputs },{ Aa and },{ Bb are 

consistent. Thus, the selection of ω need not be precise, but 

should attempt to provide a fused covariance CIC that is 

smaller than that of either input. 

 

Figure 1. Covariance Intersection solutions for ω = {0.0, 

0.2, 0.3, 0.5, 0.7, 1.0} compared to the Information Filter. 

Figure 1 provides a simple example of Covariance 

Intersection solutions as a function of the optimization 

parameterω  for two Gaussian inputs whose covariance 

matrices have equivalent determinants. The Information 

Filter solution (the dashed circle in the center of each plot) 

given by Equation (1) illustrates the over-optimistic fusion 

results that may occur if the inputs are incorrectly assumed 

to be statistically independent. The thick dashed line depicts 

the result of Equation (2) for each of the specified values 

556



ofω . This illustration demonstrates that the solution for 

0=ω and 1=ω reduce to the input B and input A, 

respectively. In this particular example, the value of ω that 

minimizes the determinant of the fused covariance is 0.5, 

which is shown in the bottom left corner of Figure 1. 

It is important to note that Equation (2) results in a very 

simple one-dimensional convex optimization problem that 

lends itself to real-time implementations. Thus, Covariance 

Intersection provides a tractable approach to mitigating 

rumor propagation in the important special case of fusing 

two Gaussian state estimates. 

3 Fast Covariance Intersection 

Some applications require the fusion of 2>n  statistically 

correlated Gaussian state estimates where each estimate is 

expressed by a mean and covariance },{ ii Σµ . While this can 

be performed by applying Equation (2) iteratively 1−n  

times, it has been noted that this approach can yield 

different (and less desirable) results than a batch solution 

given by [8]: 
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Equation (3) results in an optimization problem for the n  

values iω , where each is restricted to the interval [0, 1], 

which can be significantly more complex than the 

optimization problem of Equation (2). In particular, 

Fränken and Hüpper [8] demonstrate that this optimization 

becomes difficult when the inputs covariance matrices have 

radically different eigenvalues. As a result, the following 

fast approximation was developed in lieu of numerical 

optimization: 
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The terms in Equation (4) have interesting Information 

Theoretic interpretations that provide insight into the 

formulation of the optimization parameters iω . First,  

1~−P is the information matrix obtained by fusing all 

n inputs assuming statistical independence. Secondly, 
1−Σi is the information matrix for the i

th
 state estimate input. 

Finally, the term 
11~ −− Σ− iP is the information matrix 

obtained by fusing all inputs except for the i
th

 one. Thus, the 

optimization parameters are dictated by the mutual 

information between the information filter solution and each 

of the inputs. Using the fact that the determinant of the 

covariance represents the information content of the state 

estimate, one can also interpret the optimization parameters 

as the relative information content that each input provides 

with respect to the total information content obtained by 

fusing all inputs. 

It is important to note that Equation (4) enables simple, real-

time implementation of the more general Covariance 

Intersection problem in terms of the classical Information 

Filter result. Thus, existing fusion algorithms can be easily 

“upgraded” to implement Covariance Intersection for 

n inputs that may suffer from rumor propagation. 

 

Figure 2. Fast Covariance Intersection solution for three 

inputs with 425.01 ≅ω , 331.02 ≅ω , 244.03 ≅ω  

compared to the Information Filter solution. 

Figure 2 illustrates the Covariance Intersection fusion (thick 

dashed line) of three statistically correlated inputs using 

Equation (3) and the Information Filter solution (center of 

the plot) computed using Equation (1). The optimization 

parameters for each input are computed using Equation (4). 

As with the previous example in Figure 1, the Covariance 

Intersection solution has the same shape as the Information 
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Filter solution, but the Information Filter results in an over 

optimistic size for the fused covariance. 

4 Chernoff Fusion 

In the previous sections, the original Covariance 

Intersection and its generalization to n  inputs were 

discussed. However, in both cases, these algorithms were 

limited to the case of Gaussian inputs specified by a mean 

and covariance matrix. To develop a generalized fusion 

algorithm for any probability density function, the well-

known Bayesian fusion serves as a foundation: 
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Equation (5) provides the Bayesian fusion equation for the 

fusion of two arbitrary probability density functions that 

are assumed to be statistically independent. In the Gaussian 

case, Equation (5) takes on a log-linear form equivalent to 

Equation (1). Thus, the generalized Covariance Intersection 

(Chernoff Fusion) for fusing two arbitrary probability 

density functions that have unknown correlation is [7]: 
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Just as with Covariance Intersection, Equation (6) provides 

a set of solutions, one for each value of the parameterω . 

Hurley [7] proposes two criteria for computing the 

parameterω : (1) minimize the Shannon Entropy of the 

fused probability density function and (2) minimize the 

Chernoff information of the fused probability density 

function. Hurley demonstrates that minimizing the Shannon 

Entropy is equivalent to minimizing the determinant of the 

covariance for the Gaussian case. The Chernoff Information 

criterion attempts to find the fused probability density 

function that is in the “middle” of the input probability 

density functions. While both of these criteria have 

satisfying Information Theoretic interpretations, there are 

several practical implementation issues. First, while the 

Shannon Entropy criterion can be easily extended to the 

case of more than two inputs, the Chernoff Information 

extension is not obvious. Secondly, if the Shannon Entropy 

criterion is used for more than two inputs, the computational 

complexity is dependent upon the nature of the probability 

density functions. Generally speaking, this amounts to a 

multi-dimensional optimization problem that will often 

contain many local minima. Thus, it may be difficult to 

achieve computationally feasible fusion in many situations. 

 

Figure 3. Chernoff Fusion solutions for ω = {.1, .3, .5, .8} 

Figure 3 illustrates Chernoff Fusion solutions (thick dashed) 

with respect toω  for two probability density functions 

(Appendix A) having Shannon Entropies that are identical. 

The Bayesian Fusion solution (center of each plot) is given 

by Equation (5). In this example, the value of ω that 

minimizes both of Hurley’s criteria is 0.5. 

 

Figure 4. Chernoff Fusion solutions for ω = {.1, .3, .5, .8} 
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Figure 4 depicts another example of Chernoff Fusion for a 

case where the Shannon Entropies of the inputs are not 

equal to each other. In this case, the value of ω that 

minimizes both of Hurley’s criteria is 0.47. 

5 Generalized Chernoff Fusion 

Ultimately, it is desirable to develop an algorithm that 

handles the most general fusion problem, fusion of n  

statistically correlated probability density functions. In 

addition, while a theoretical result may be satisfying, a 

computationally simple solution is necessary to achieve 

practical, scalable distributed fusion. Starting with Equation 

(6), the obvious extension to Chernoff Fusion for multiple 

inputs is given by: 
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where the optimization parameters iω need to be computed 

using some criteria. As noted in the previous section, the 

implementation of this optimization problem may be too 

complex for practical implementations. 

After reviewing previous research results outlined in 

Sections 3-4, there are several notable observations that 

indicate an approximate solution to the Generalized 

Chernoff Fusion problem exists: 

• The optimization parameters in Equation (4) depend 

upon the determinant of the covariance matrix for a 

Gaussian distribution. 

• The determinant of the covariance matrix is related to 

the Shannon Entropy for a Gaussian distribution. 

• The “optimal” value of ω  in Equation (6) depends 

upon the Shannon Entropy of the inputs. 

This analysis seems to indicate that an analogous formula to 

Equation (4) exists and that it is a function of the Shannon 

Entropy of the arbitrary probability density function inputs. 

With this goal in mind, the following are noted. First, the 

Shannon Entropy H for an m-variate Gaussian distribution 

is given in terms of its covariance Σ by: 

 ( ) [ ]

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 Σ= det2ln

m

Gaussian eH π  (8) 

Secondly, the determinant has the following property: 
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Putting Equation (8) and (9) together, we obtain the 

following useful relationship between the covariance matrix 

of a Gaussian probability density function and its Shannon 

Entropy: 

 [ ] ( ) ( ) GaussianHmm
e

−− =Σ 221 2det π  (10) 

Furthermore, following the same Information Theoretic 

interpretation provided after Equation (4), we define the 

Shannon Entropies: BH for the Bayesian fusion of all n , 

iH for the i
th

 input, and iBH − for the Bayesian fusion of all 

except the i
th

 input. Inserting Equation (10) into Equation 

(4) and simplifying, we obtain (Appendix B): 

 

[ ]∑
=

−−

−−

−

−

−+

+−
=

n

j

HHHH

HHHH

i

iBBiB

iBiBB

een

ee

1

1
ω  (11) 

Just as with Equation (4), Equation (11) computes the 

optimization parameters using the relative information 

content of each of the inputs compared to the fused result. 

In particular, the term BiB HH −− is the information 

increase due to the inclusion of the i
th

 input while the term 

Bi HH − is the information increase due to the inclusion of 

all data except for the i
th

 input. 

Although Equation (11) is far simpler than performing 

multi-parameter optimization, it still may not provide a 

practical means of computing the optimization 

parameters iω . To implement Equation (11) as written, the 

following steps are required: 

1. Compute the Shannon Entropy iH  of each of the n  

input probability density functions. 

2. Compute 1+n  Bayesian Fusion solutions: one 

solution that contains all n  inputs; and n  other 

solutions, each containing all but the i
th

 input. 

3. Compute the Shannon Entropies of each of the 

Bayesian fusion solutions described in the previous 

step and evaluate Equation (11). 

With these steps, Equation (11) can be evaluated using an 

existing Bayesian Fusion algorithm and computing Shannon 

Entropies. 
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As an alternative to the approach outlined above, a few very 

simple approximations can be made to expedite 

computations. First, we may assume (as a lower limit) that 

the Shannon Entropy of the Bayesian Fusion results are 

equal to the input with the smallest Entropy divided by the 

number of inputs “ n ”. That is, we can make the following 

lower limit approximations: 
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Using Equation (12), we can reduce Equation (11) to: 
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Equation (13) provides the optimization parameters in terms 

of only the Shannon Entropies of the probability density 

function inputs. Thus, it provides a tractable solution for 

Generalized Chernoff Fusion. 

To validate Equation (13), several fusion examples were 

developed and the results were compared with the “optimal” 

solution obtained using numerical optimization techniques. 

 

Figure 5. Generalized Chernoff Fusion for three PDFs 

Figure 5 illustrates the Generalized Chernoff Fusion of three 

probability density functions. The approximate solution 

obtained using Equation (13) is shown with the thick dashed 

line while the numerical optimization result is shown with 

the thick dot-dashed line. For comparison, the Bayesian 

Fusion result for all three inputs is also depicted. Equation 

(13) resulted in the following optimization parameters: 

 
35.0)(

23.0)(42.0)(

≅

≅≅

Approx

ApproxApprox

C

BA

ω

ωω
 (14) 

while the numerical optimization resulted in: 
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BA

ω
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It is evident from Figure 5 that the solutions are not very 

different from each other, although the values of the 

solutions do differ. However, given the extremely simple 

Equation (13) as compared to the general problem of 

numerical optimization, these minor discrepancies seem 

acceptable in order to achieve a fast approximate solution. 

 

Figure 6. Generalized Chernoff Fusion for five PDFs 

Figure 6 provides an additional example of the Generalized 

Chernoff Fusion Approximation (thick dashed line), the 

Generalized Chernoff Fusion due to numerical optimization 

(thick dot-dashed line) as well as the Bayesian Fusion 

solution (egg-shaped dashed line in the center of the plot). 
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In this case, the optimization parameters for the five input 

probability density functions from Equation (13) are: 
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while the numerical optimization resulted in: 
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Again, the solutions are quite similar while the 

computational complexity is vastly different. 

6 Summary and Future Work 

Leveraging previous work beginning with the original 

Covariance Intersection algorithm and subsequent 

extensions to handle multiple Gaussian inputs and pairs of 

non-Gaussian probability density functions, a fast 

approximation for the general case was developed. This 

approximation was derived by noting: (1) the relationship 

between the Shannon Entropy and the determinant of the 

Gaussian covariance and (2) that the fast approximation 

previously developed (Equation 4) captured the relative 

information content of each input with respect to the 

Bayesian fused solution. The novel contribution of this 

paper was compared to numerical optimization for 

validation and it was found that the Generalized Chernoff 

Fusion solutions produced very similar probability regions. 

Future work will investigate the degree to which these 

solutions differ in order to further validate the fast 

approximation. In addition, this approximation will be 

verified using extreme limiting situations such as cases 

where the Shannon Entropies of the input probability 

density functions are both very large and very small.  

7 Appendix A 

The Probability Density Functions (PDFs) presented in 

Figures (3)–(6) are given by a product of PDFs defined in 

Polar coordinates (range “r” and bearing “b”) converted into 

Cartesian coordinates (x and y) using a simple 

transformation of variables from Polar to Cartesian. The 

Polar coordinate representations of these PDFs are given by: 

 

 

Figure 7. PDFs used in Figures 3-6 in Polar Coordinates 

Using these PDFs, the Cartesian PDFs are given by: 
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Figures (3)–(6) provide several examples where the 

parameters “rmin”, “rmax”, “bmean”, and “ bσ ” are varied to 

produce probability density functions reminiscent of 

observation likelihoods for passive acoustic or electronic 

warfare sensors. 

8 Appendix B 

Starting with Equation (4) and using the relations defined in 

Equations (8) and (10), we can express Equation (4) in terms 

of the Shannon Entropies BH , iH ,and iBH − : 
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Canceling common factors in the numerator and 

denominator, we arrive at Equation 11: 

( ) ( )

( ) [ ]

[ ]∑

∑

=

−−

−−

=

−−−

−−−

−

−

−

−

−+

+−
=











−+

−+
=

n

j

HHHH

HHHH

n

j

HHHmm

HHHmm

i

iBBiB

iBiBB

iBiB

iBiB

een

ee

eeene

eeee

1

1

)2/(2

)2/(2

1

2

2

π

π
ω

 

9 References 

[1] Ceruti, M.G.; Wright, T.L.; Powers, B.J.; McGirr, 

S.C., "Data Pedigree and Strategies for Dynamic Level-One 

Sensor Data Fusion," Information Fusion, 2006 9th 

International Conference on, vol., no., pp.1-5, 10-13 July 

2006. 

[2] Nicholson, D.; Lloyd, C.M.; Julier, S.J.; Uhlmann, 

J.K., "Scalable distributed data fusion," Information Fusion, 

2002. Proceedings of the Fifth International Conference on, 

vol.1, no., pp. 630-635 vol.1, 2002. 

[3] Jeffrey K. Uhlmann, 'General Data Fusion for 

Estimates with Unknown Cross Covariances." SPIE vol. 

2755, 1996, pp. 536-547. 

[4] J. K. Uhlmann, J. K. Julier, and M. Csorba, 

"Nondivergent simultaneous map-building and localization 

using covariance intersection." Proc. SPIE -Int. Soc. Opt. 

Eng., vol. 3087, April 1997, pp. 2-11. 

[5] S. J. Julier and J. K. Uhlmann, "A Non-divergent 

estimation algorithm in the presence of unknown 

correlations." Proc. 1997 Am. Control Conf., v. 4, June 

1997, pp. 2369-2373. 

[6] Jeffrey Uhlmann, Simon Julier, Behzad Kamgar-Parsi, 

Marco Lanzagorta, and Haw-Jye Shyu, "The NASA Mars 

Rover: A Testbed for Evaluating Applications of 

Covariance Intersection." SPIE Con. Unmanned Ground 

Vehicle Tech., Orlando, Florida, vol. 3693, April 1999, pp. 

140-149. 

[7] Hurley, M.B., "An information theoretic justification 

for covariance intersection and its generalization," 

Information Fusion, 2002. Proceedings of the Fifth 

International Conference on, vol.1, no., pp. 505-511 vol.1, 

2002. 

[8] Franken, D.; Hupper, A., "Improved fast covariance 

intersection for distributed data fusion," Information 

Fusion, 2005. 8th International Conference on, vol.1, no., 

pp. 7 pp.-, 25-28 July 2005. 

[9] J. Manyika and H.F. Durrant-Whyte, Data Fusion and 

Sensor Management: An Information-Theoretic Approach, 

Prentice Hall, 1994. 

[10] S. Grime and H.F. Durrant-Whyte, Data fusion in 

decentralized networks, Control Eng. Practice, vol. 2: pp. 

849-863, 1994. 

 

562


